Date	
Project	\square
Engineer	\square
Contractor	\square

The flexible diffuser

- Circular flexible diffuser with perforation
- Made with PVC permeated polyester (Polyvinyl Chloride).
- Made according to the ASTM-D 2136 standard "Standard test method for coated fabrics-low-temperature bend test".
- Qualified to NFPA 701, ASTM E-84 class 1 and CAN/ULC S102-10 standards, "Standard method of test for surface burning characteristics of building materials and assemblies".
- Resistant to mechanical traction of 400×375 Lbp/in.
- Treated for resistance to dust, UV rays, salty environments, condensation, fungi and mold.
- Weight of $542 \mathrm{~g} / \mathrm{m}^{2}$ (16 oz/yard2).
- Section can reach up to 15 meters (50 ft)
- Diameter from 203 mm (9 in) to 1524 mm (60 in).
- Perforation designed with software.
- Easy to clean
- 17 colours available.
- Single or double suspension.
- PVC extrusion integrated into the diffuser allowing suspension to rail.
- Joining sections with zippers or by metal collar.

Accessories

The elbows, reducers and end caps are available in polyvinyl. All of the standard accessories (elbows, sleeves, reducers, multi-branch connectors, etc.) are available in the precise dimensions of the diffusers.

For air balancing reasons, reducers are required between sections.

Reducers

Elbows

General operation

The FDD flexible diffuser is made to surpass the technical limits of traditional air diffusion systems.
Its function is based on the principle of high induction diffusion. The perforations, of various diameters, and their positioning on the FDD promote a displacement of a large quantity of ambient air (see the illustration below).

The thermal exchange between the blown air and the ambient air occurs close to the FDD, and the temperatures rapidly near isothermal levels. The risk of stratification is eliminated without creating drafts in the occupied zone.

Heat recovering

In this type of situation, in a space where internal heat sources are very high, it allows for much more significant energy savings. The higher the amount of heat, the more the FDD is efficient.

In some cases, energy saving in winter can reach up to 100% on the heating of the fresh air and the heating of the building..

Height of areal Mode of diffusion

Indeed, for areas with elevated heights ($\mathrm{H}>6 \mathrm{~m}(20 \mathrm{ft}$)), the FDD is perforated to diffuse air downwards, for both heating and cooling modes.

In the case of heating mode, air is directed downwards to oppose the force of gravity exerted on the different densities of warm blown air and cooler ambient air (figure A). The large mass of air circulates in a controlled manner, from the top of the space downwards, resulting in an optimal temperature mixture. The variation in temperature throughout the occupied area is $<1^{\circ} \mathrm{C}$.

Figure A :

Representation of the induction effect generated by the FDD

For rooms with lower ceilings ($\mathrm{H}<6 \mathrm{~m}(20 \mathrm{ft})$), air is pushed upwards through the FDD (see figure B). For cooling mode, the multitude of perforations with different diameters allow air to be pushed upwards. It then mixes with the hot air of the room which often accumulates at ceiling height.

Figure B :
Cooling mode with lower heights $\quad-\quad H<6 m(20 f t)$

\emptyset diameter		Total weight	
mm	in	kg / li m.	$\mathrm{lb} / \mathrm{lift}$.
203	8	1.17	0.79
254	10	1.26	0.85
305	12	1.35	0.91
356	14	1.43	0.96
406	16	1.52	1.02
457	18	1.61	1.08
508	20	1.69	1.14
559	22	1.78	1.20
610	24	1.87	1.26
660	26	1.95	1.31
711	28	2.04	1.37
762	30	2.13	1.43
813	32	2.21	1.49
864	34	2.30	1.55
914	36	2.39	1.60
965	38	2.47	1.66
1016	40	2.56	1.72
1067	42	2.65	1.78
1118	44	2.73	1.84
1168	46	2.82	1.90
1219	48	2.91	1.95
1270	50	2.99	2.01
1321	52	3.08	2.07
1372	54	3.17	2.13
1422	56	3.25	2.19
1473	58	3.34	2.25

The lightweight polyvinyl and the support mechanism allow for a rapid installation of the FDD. The installation consists in a suspension of a rail on the ceiling with $9.5 \mathrm{~mm}(3 / 8 \mathrm{in})$ threated rods supplied by the installer.

Once the rail is installed, the tube is slid onto the rail. It should be noted that the distance between the two suspension rods is $3 \mathrm{~m}(10 \mathrm{ft})$ or less, as illustrated in figure 2.

The FDD can be installed in two ways; either by single centered suspension on a rail (figure 3) or by a double lateral suspension with two rails (figure 4).

Single suspension

Figure 3

Double suspension

Figure 4

[^0]

Codification of reducers

Codification of additionnal accessories for FDD flexible diffuser installation

Accessories supplied with FDD diffuser
- Rail
- Slider (single or double)
- Connectors

[^0]: Note : a slider is provided per $1.5 \mathrm{~m}(5 \mathrm{ft})$ length

